

Carsten Schmoll, 24. November 2014

ANNO 2012

SPIEGEL ONLINE NETZWELT

05.06.2012

Start von IPv6

Mittwoch wird das Internet umgestellt

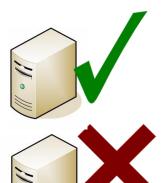
NEUE INTERNET-ADRESSEN

Geht mein Internet bald nicht mehr?

IPV6: DAS MÜSSEN SIE JETZT WISSEN

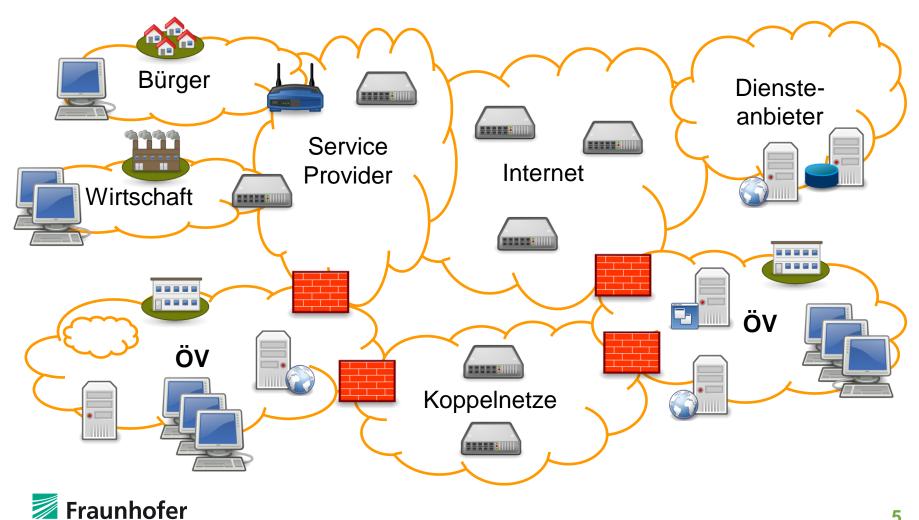
KLEINE FRAGE VORAB

mit / statt / trotz

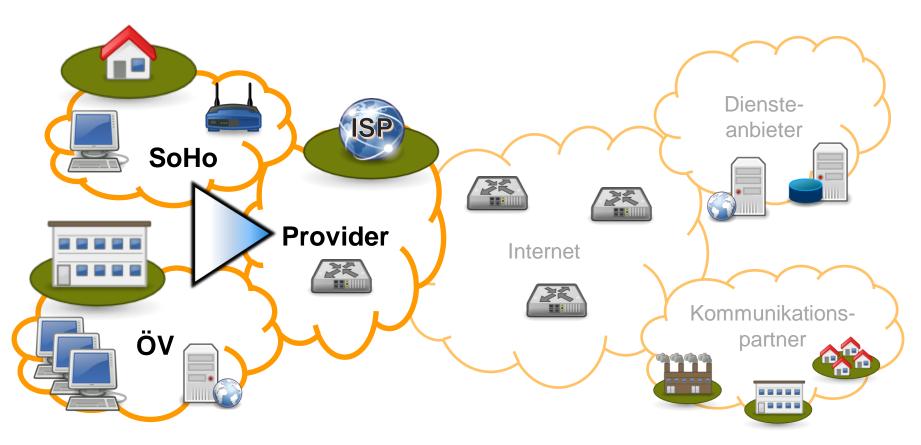


EINFÜHRUNG VON IPv6

- Von wo kommt IPv6 auf mich zu?
- Von innen, von außen, von oben, von unten?
- i.d.R. gilt: "Wenn ich es gar nicht unterstütze, dann kommen auch keine IPv6 Datenpakete auf mich zu."
 - Ausnahmen bestätigen die Regel, z.B. beim Webhosting
- IPv6 kommt eher als "Anforderung von oben" auf mich zu
 - Kunden und/oder Projektpartner wollen IPv6 mit Ihnen sprechen
 - Einige E-Mail-Server auf dieser Welt sind schon IPv6-only
 - Bürger bekommen zunehmend IPv6 zu Hause. Bei DS-Lite
 Technik ist IPv6 nativ verfügbar und IPv4 evtl. eingeschränkt
 - Ich will Internet-of-Things einsetzen und habe keine 10.000 freien IPv4 Adressen mehr verfügbar um jedem Gerät 1 zu geben



IPv6 KOMMT ÜBERALL...

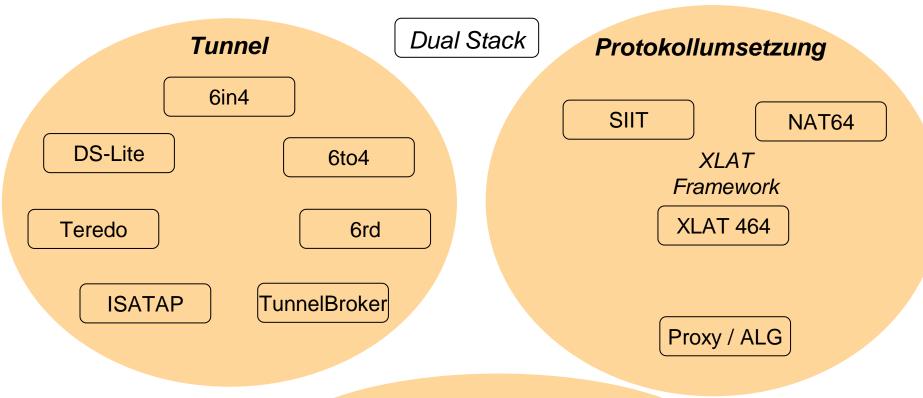

FOKUS

... AUCH BEI AKTEUREN IM ANSCHLUSSBEREICH

KANN ICH DAS NICHT EINFACH EINSCHALTEN?

GOVERNMENTS ENABLED WITH IPV6

- auf Endgeräten: PC / Smartphone / Tablets
- i.allg. JA, oder es ist schon aktiv und wird genutzt, sobald es im Netzwerk zur Verfügung steht


Eindeutig **JEIN!**

- auf Servern, Gateways, Routern und Firewalls
- Oft Ja, wenn das Gerät nicht allzu alt ist;
 IPv6 muss auf Gateways/Routern/Firewalls meist erst manuell eingeschaltet werden
- am Internet-Anschluss (DSL, Kabel, WAN / "Internet vom Provider")
- Muss der Internet-Service-Provider anbieten und aktivieren
- Eigene Infrastruktur übernimmt dies i.allg. nicht (zu Hause ggf. doch automatisch)
- auf Internet-Backbones und in kommerziellen Rechenzentren
- IPv6 längst aktiv auf internationalen Backbones, in Clouds und bei Web- und Server-Hosting (Kunden kaufen sonst nicht mehr)

EIN NEUER STANDARD FÜR JEDES SETUP

weitere Mechanismen

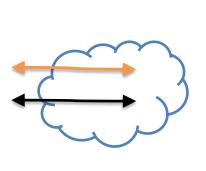
VLANs

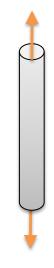
NAT

CGN

Terminalserver-Zugriff

KEINE DIREKTE KOMMUNIKATION ZW. IPv4 UND IPv6




IPv4 und IPv6 sind nicht zueinander kompatibel

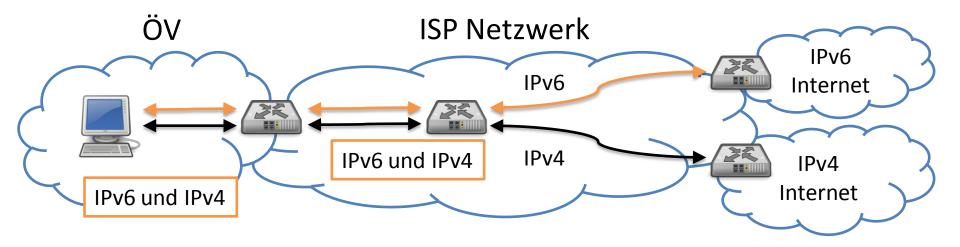
Mögliche **Lösungstypen**

Parallel-Betrieb oder Tunnel oder Zwischen-Systeme (middleboxes)

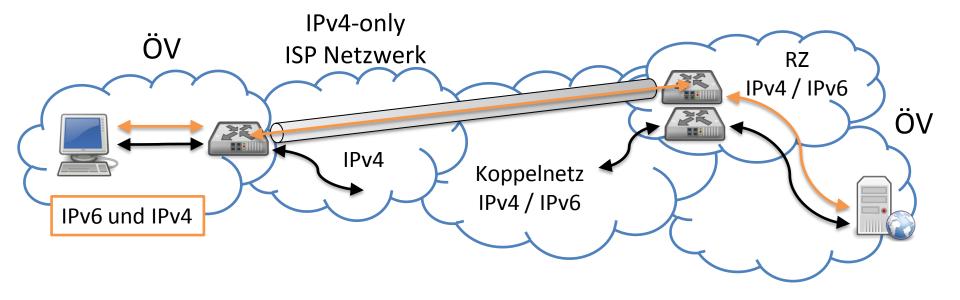
DIE DREI GRUNDLEGENDEN ANSÄTZE

- Dual Stack ("IPv4 und IPv6 parallel")
 - Geräte sind über beide Protokolle gleichzeitig erreichbar, automatische / konfigurierbare Auswahl

- physikalische nicht nötig und nicht empfohlen
- Tunnel ("Verbindung von IPv6-Inseln")
 - Anbindung einzelner IPv4- bzw. IPv6-Inseln

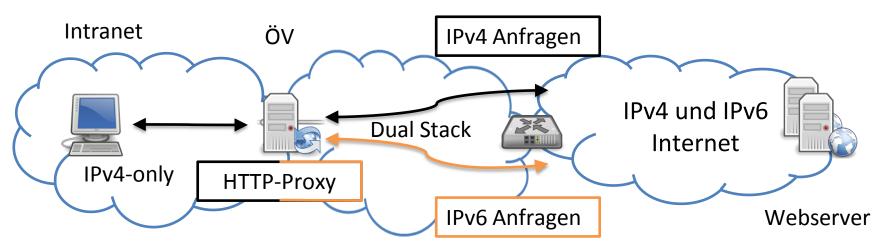

- Verbindung zwischen mehreren IPv4- bzw. mehreren IPv6-Inseln
- Protokollumsetzung
 - auf Netzwerkebene: zwischen IPv4-only- und IPv6-only
 - auf höheren Ebenen: durch Application Layer Gateways (ALGs) oder Proxies (z.B. http-Proxy)

DUAL-STACK



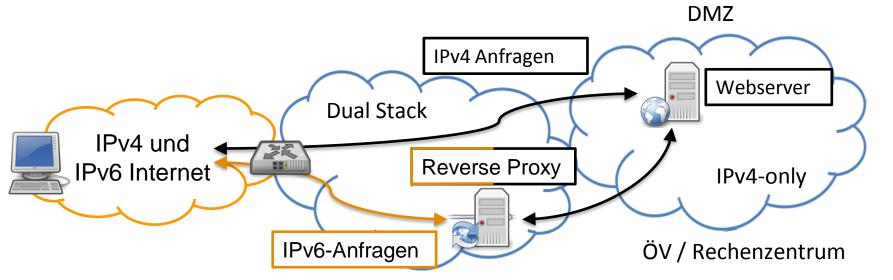
- paralleler Betrieb von IPv4 und IPv6
- universeller Einsatz, im ...
- Intranet (bei Anwendungen, Servern, Arbeitsplätzen)
- Internet-Zugang / beim Dienstangebot
- Backbone (heute schon Standard)

TUNNELBROKER



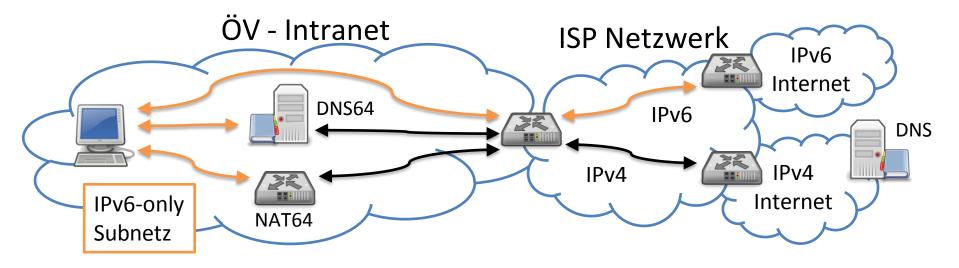
- Konfiguration statischer Tunnel
- Übertragung von IPv6-Pakten über IPv4-Netze
- extra Tunnelbroker-Server für die Signalisierung unterstützt die Findung des Tunnelendpunktes und den sicheren Verbindungsaufbau

AUSGEHENDER HTTP PROXY



- Mögliche Übergangslösung für Zugriff aus einer IPv4-only-Umgebung ins IPv4- und IPv6-Internet (bzw. aus neuem IPv6-only)
- vorhandener Dienst und dessen Server müssen nicht angepasst werden
- relativ geringer Aufwand; Proxy-Technologie und Lösungen ausgereift
- Brückentechnologie vor Einführung von IPv6 im Intranet

EINGEHENDER HTTP REVERSE PROXY



- zusätzlicher Reverse Proxy, um Inhalte eines IPv4-only Webservers auch im IPv6-Internet abrufbar zu machen
- Konfiguration des bestehenden Webservers kann dabei zumeist komplett unverändert erhalten bleiben.
- Brückentechnologie, bis der Webserver auch Dual-Stack-tauglich ist.

NAT64 / DNS64

- Technik, die Endsystemen in (neuen) IPv6-only Umgebungen erlaubt, zusätzlich auch auf IPv4-Systeme im Intranet und Internet zuzugreifen
- funktioniert nur mit Diensten, welche sich über Namen (URI/URL oder Hostname) ansprechen lassen, nicht bei nur numerischer IPv4-Adresse
- benötigt zwingend einen DNS64-Server und NAT64-Gateway im Intranet

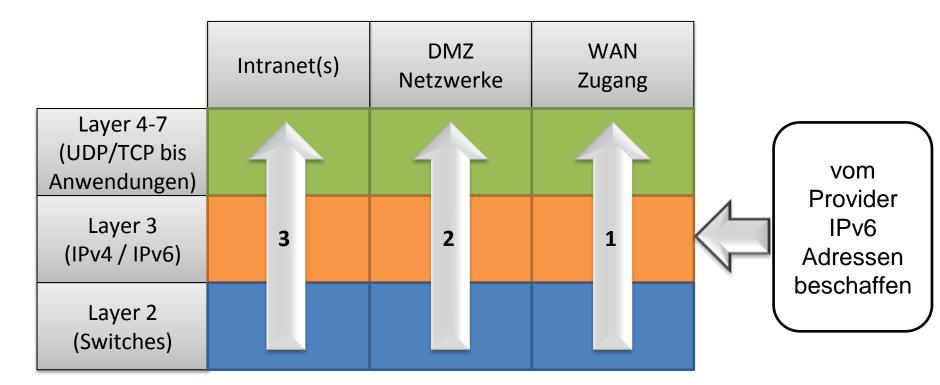
TECHNIK ALLEIN IST NICHT ALLES

- Technik-Seite
 - ggf. neue Software und Geräte

Bedarf an Schulung für "die Netzwerker"/ das NOC

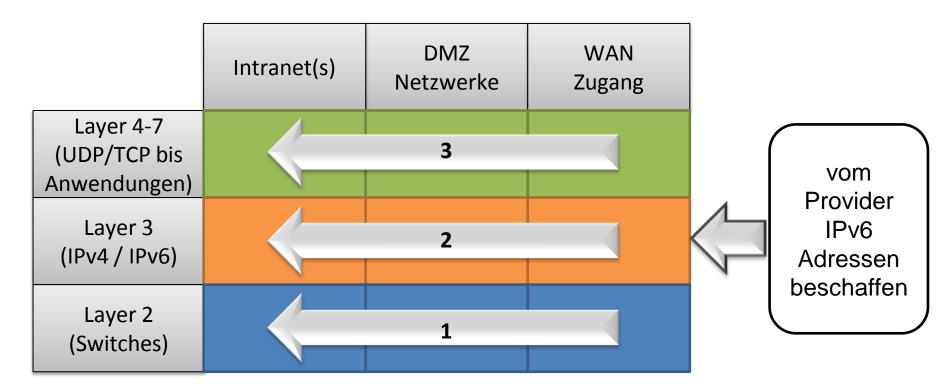
- Kommunikation intern und extern:
 - "wir machen jetzt auch IPv6"

- Einen PLAN zur gezielten Einführung
 - IPv6 soll WO funktionieren?
 - WIE migriere ich dorthin?
 - Mit welchem BUDGET? Und bis WANN?


Migration == Projektarbeit

EINFÜHRUNG "VON UNTEN NACH OBEN"

- IPv6-Einführung betrifft verschiedene Layer in Netzwerk-Stack
- IPv6-Einführung kann eines oder mehrere Netze betreffen



EINFÜHRUNG "VON AUßEN NACH INNEN"

- Günstiger, wenn sowieso alle Netze umgestellt werden sollen
- Beschaffung von neuen Geräten eher "in einem Rutsch" möglich

NICHT ABWARTEN

Jetzt sich schlau machen!

- Lesen
- Sich austauschen
- IPv6 Testen (am besten im eigenen IPv6 Testbed)

Testbed)

Jetzt vorsorgen

- automatische Tunnel abschalten / blocken (Sicherheit)
- Beschaffungen anstoßen (da sehr zeitintensiv)
- Ziele festlegen ("unser Webserver soll IPv6 sprechen")
- Adressen besorgen und Adressplan überlegen

IPv6 EINFÜHRUNG – JA, BITTE!

- Bei Neubeschaffungen immer darauf achten!
- Bei neuen Verträgen immer verlangen! (bei HW / SW / ISP)
- Seien sie Vorreiter! (wer ist schon gern Nachzügler?)
- Tauschen Sie sich aus! ("ach, sie hatten dieses Problem auch?")
- Migrationsprojekt "zu groß"?
 - Machen Sie kleine Schritte!
 - Die richtige Brückentechnologie ist 100%ig okay.

ZEIT FÜR FRAGEN

Vielen Dank für ihre Aufmerksamkeit!

Fragen?

KONTAKT

Fraunhofer FOKUS
Kaiserin-Augusta-Allee 31

10589 Berlin, Germany

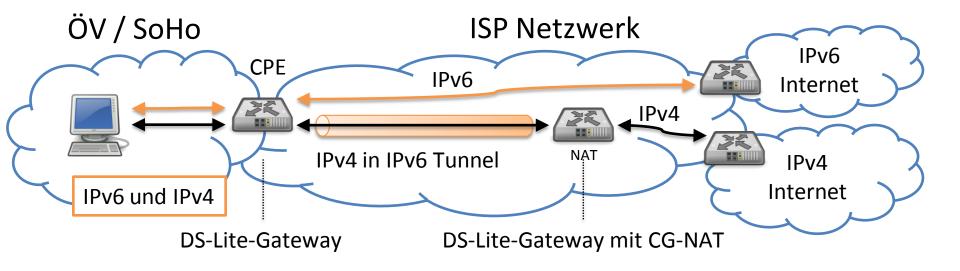
www.fokus.fraunhofer.de

Carsten Schmoll

carsten.schmoll@fokus.fraunhofer.de Tel. +49 (0) 30 3463-7136

ENDE

STOLPERSTEINE



- Organisatorisch
 - wenig Erfahrung bei der Umsetzung
 - Unwissenheit / fehlendes Verständnis
 - Komplexität bei Dual-Stack
- Technisch
 - unausgereifte Implementierungen
 - teilweise mangelnde Unterstützung
 - automatische Tunnel
 - neue Angriffsmethoden

DS-LITE

- Provider-Technologie: Kunden bekommt IPv6 und eingeschränktes IPv4
- IPv6 wird nativ vom Provider zur Verfügung gestellt, wie bei Dual-Stack
- IPv4 über Carrier Grade NAT bereitgestellt, Einschränkung zu Dual-Stack

BEWERTUNGEN

	SoHo	ÖV	ISP
Dual Stack	++	++	++
6in4	(→ Tunnelbroker)	+	
Teredo / 6to4	- (Sicherheit)	(Sicherheit)	
ISATAP		-	
DS-Lite / CGN	+ (über ISP)	- (über ISP)	+ (spart IPv4)
6rd	+ (über ISP)	- (über ISP)	+ (ermöglicht IPv6)
ÖV-Tunnelbroker	+	+ (Nutzer/Anbieter)	(ggf. Dienstanbieter)
NAT64 & DNS64	- (Aufwand)	+	
XLAT464	+ (über ISP)	- (über ISP)	+ (für neue ISP)
Proxy / ALG	+	++	- (ggf. Dienstanbieter)
Reverse Proxy		++	(ggf. Dienstanbieter)
L2-VLAN		-	
SIIT		+	+